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프로그램 합성

• 사용자가 원하는 (생김새 + 행동) 프로그램을 자동 생성하는 기술

• 1945년부터 언급 (앨런 튜링)  

 
실현될 경우 개발의 무거운 짐을 덜어줄 것으로 기대되는, 전산학
의 성배(holy grail)

프로그래밍 할 줄 
몰라도  

표현할 수 있어야 
(예: 입출력 예제)

요구조건 프로그램What is program synthesis?



프로그램 합성과 연관기술 비교  
(합성 vs. 컴파일러)

• 공통점: 고 수준 언어로 쓰인 개념
을 실행 가능한 프로그램으로 변
환

• 차이점: 

• 컴파일러: 탐색 과정 없이 단
순 변환 

• 합성: “어떻게” 주어진 목표를 

달성할지 컴퓨터가 탐색

void insert(node *xs, int x) {
node *new;
node *temp;
node *prev; 

new = (node *)malloc(sizeof(node)); 
if(new == NULL) {
printf("Insufficient memory.");
return;

}   
new->val = x;
new->next = NULL;
if (xs == NULL) {
xs = new;

} else if(x < xs->val) {
new->next = xs;
xs = new;

} else {   
prev = xs;
temp = xs->next;
while(temp != NULL && x > temp->val) {
prev = temp;
temp = temp->next;

}
if(temp == NULL) {
prev->next = new;

} else {
new->next = temp;
prev->next = new;

}
}

}

insert x xs =
match xs with
Nil ͥ Cons x Nil
Cons h t ͥ
if x ʵ h
then Cons x xs
else Cons h (insert x t)

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], 0
mov ebx, [ebp + 8]
cmp dword [ebx], 0
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], 0
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly C Haskell

let rec insert x xs = 
match xs with 
| [] -> x :: [] 
| h :: t -> 

if x <= h then x :: xs 
else h :: (insert x t)

OCaml

어셈블리



프로그램 합성과 연관기술 비교  
(합성 vs. 기계학습)

• 공통점: 주어진 입출력 데이터에 맞게 작동하는 함수 찾기

• 차이점: 

• 기계학습: 튜링완전turing complete하지 않은 대상(결정트리, 인공신경망 구조 등) 

학습, (대개)결과물 해독 불가, 주어진 데이터에 꼭 맞지 않아도 됨 (노이즈 허용). 

• 합성: 일반 프로그램 대상(튜링 완전), 해독 가능, 주어진 데이터에 꼭 맞아야.



프로그램 합성의 두 방향

엄밀한 합성 느슨한 합성

대두 시기 1960년대 2010년대 (딥러닝의 출현과 함께)

생김새 및 행동제약 조건  
만족여부

항상 만족 만족 못시킬 수 있음

속도 느림 빠름

방법 알고리즘 수행 신경망 추론

대표적 예 Excel FlashFill GitHub Copilot

발표되는 학회 POPL, PLDI, ICSE, FSE, … 
(PL 및 SE 저명학회)

NIPS, ICML, AAAI, … 
(ML 저명학회)



느슨한 합성의 예 — GitHub Copilot

• 자연어 (+ 입출력 예제) → Python 코드 

• OpenAI의 GPT-3 를 코드 생성에 맞게 특화

• 164개 합성 문제 중 28%에 대해서만 맞는 프로그램 생성 (문법에 맞지 않는 프로그램 
생성 가능)

• 생성되는 프로그램 크기 ↑ → 오류 확률 기하급수적으로 증가



프로그램 합성의 두 방향

엄밀한 합성 느슨한 합성

대두 시기 1960년대 2010년대 (딥러닝의 출현과 함께)

생김새 및 행동제약 조건  
만족여부

항상 만족 만족 못시키는 경우 흔함

속도 느림 빠름

방법 알고리즘 수행 신경망 추론

대표적 예 Excel FlashFill GitHub Copilot

발표되는 학회 POPL, PLDI, ICSE, FSE, … 
(PL 및 SE 저명학회)

NIPS, ICML, AAAI, … 
(ML 저명학회)

우리의 주된 연구 관심
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동일식 모두 모으기(equality saturation)을 적용하여 성능 개선 



동형암호(Homomorphic Encryption)

• 암호화된 데이터에 임의의 연산 수행 가능한 암호

• 데이터보안 100% 보장



동형암호 프로그램 개발

암호학적 지식 필수 (갖춰도 어려움!)



동형암호 컴파일러

• 평문 프로그램으로부터 동형암호 프로그램 자동 생성 

• 최적화: 수동 작성된 휴리스틱 기반
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수동작성 vs. 동형암호 컴파일러 이용 시 코드
(두 암호화된 정수 덧셈)

#include <iostream> 
#include <fstream> 
#include <integer.hxx> 

int main() 
{ 
        Integer8 a, b, c; 

        cin >> a; 
        cin >> b; 
        c = a + b; 

        cout << c; 
        FINALIZE_CIRCUIT(blif_name); 
}

#include "FHE.h" 
#include "EncryptedArray.h" 
#include <NTL/lzz_pXFactoring.h> 
#include <fstream> 
#include <sstream> 
#include <sys/time.h> 

int main(int argc, char **argv) 
{ 
    long m=0, p=2, r=1; // Native plaintext space 
                        // Computations will be 'modulo p' 
    long L=16;          // Levels 
    long c=3;           // Columns in key switching matrix 
    long w=64;          // Hamming weight of secret key 
    long d=0; 
    long security = 128; 
    ZZX G; 
    m = FindM(security,L,c,p, d, 0, 0); 
    FHEcontext context(m, p, r); 
    buildModChain(context, L, c); 
    FHESecKey secretKey(context); 
    const FHEPubKey& publicKey = secretKey; 
    G = context.alMod.getFactorsOverZZ()[0]; 
    secretKey.GenSecKey(w); 
    addSome1DMatrices(secretKey); 
    EncryptedArray ea(context, G); 
    vector<long> v1; 
    v1.push_back(atoi(argv[1])); 
    Ctxt ct1(publicKey); 
    ea.encrypt(ct1, publicKey, v1);     
    v2.push_back(atoi(argv[2])); 
    Ctxt ct2(publicKey); 
    ea.encrypt(ct2, publicKey, v2); 
    Ctxt ctSum = ct1; 
    ctSum += ct2; 
} ���
���������������������� �
�	���
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프로그램 합성 기반 최적화

• 사람이 찾기 힘든 최적화 규칙 발견 자동 발견 (by 합성)

• 기존 휴리스틱 기반 기법보다 우수한 최적화 성능 
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간단한 동형암호 스킴



장애물: 증가하는 Noise



곱셈 깊이: 가장 중요한 성능 지표

• 곱셈 깊이: 입력에서 출력으로 이르는 길 중 가장 많은 누적 곱셈 연산 횟수



동형암호 최적화 = 곱셈깊이 축소

• 의미는 동일하며 더 적은 곱셈 깊이를 갖는 회로 찾기



프로그램 합성 기반 최적화



문제: 회로가 일반적으로 너무 큼



해결책1: 분할정복



해결책1: 분할정복



해결책2: 합성한 최적화 규칙 재사용

• 오프라인 학습

• 성공적인 합성 사례들을 모아 최적화 규칙 사전 편찬

• 온라인 최적화

• 새로운 입력회로에 대해 사전에 있는 최적화 규칙들 적용



오프라인 학습
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온라인 최적화



온라인 최적화



합성된 최적화 규칙들 예



더 잘할 수 없을까?

• 최적화 규칙을 임의의 순서로 적용하는 것은 최적에 못미치
는 결과를 생성할 수 있음

• 왜냐하면 서로 다른 최적화 규칙들이 서로가 사용되는 것
을 방해할 수 있기 때문

• 해결책: 모든 가능한 순서 다 적용해보기
*1�>�



동일식 모두 모으기 (Equality Saturation)

• 규칙들을 모든 가능한 순서대로 적용해보고 모든 결과 저장

• 예: 원본 입력 회로  

• 쓸 수 있는 최적화 규칙들: 
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.
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Optimizing Homomorphic Evaluation Circuits by Program Synthesis, Term Rewriting, and
Time-Bounded Exhaustive Search 111:15

we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 4, Article 111. Publication date: August 2021.



E-graph 를 이용한 완전탐색
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111:16 Dongkwon Lee et al

with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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• 규칙 (1) 적용 (어두운색: 새로 추가된 노드)
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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• 규칙 (2) 적용
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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• 규칙 (1) 적용결과와 (2) 적용 결과 합치기
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with the enode that contains 0, we can �gure out that the initial circuit is semantically equivalent
to 0. More details of these three steps are described in [57].
We repeat the above three steps until no further changes are made (i.e. E-graph is saturated).

Since it is not guaranteed that an E-graph will end up saturating, we give an appropriate amount
of time limit (12 hour).

Fig. 3. Change of E-graph during a single iteration. Do�ed box means eclass. (a) ematch result for root enode.
(b) add subcircuit c1 and c2 to E-graph. (c) merge root node and result enodes (c1 and c2) of add step.

In the extraction process, we extract the least-cost circuit from the saturated E-graph for the
given cost model. If the cost function is local (the cost of a node is computable only with the costs of
its children nodes), it is known that the least-cost circuit for that cost model can be easily extracted
from the E-graph [57]. In our case, since the multiplicative depth of the circuit is a local function,
circuits with the lowest multiplication depth can be easily extracted.

4.4.3 Tradeo� between Optimality and Cost. In our single-path (i.e. without backtracking) term
rewriting system de�ned in Section 4.3, we can only explore limited optimization space due to
termination property and e�ciency. To ensure termination, we selectively rewrite a target circuit
only when its multiplicative depth is reduced. For e�ciency, we apply rewrite rules only to a target
circuit lying on critical paths. For these reasons, we have to give up the guarantee to �nd a globally
optimal circuit for e�cient and terminating rewriting procedures.
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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• 규칙 (3)   적용후, 결과 합치기
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we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.
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• 규칙 (4)  적용 후 결과 합치기
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we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite
rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term
rewriting in that every graph transformation step corresponds to a sequence of applications of
term rewrite rules. The interested reader is referred to [45] for more details about the soundness
proof and the translation method.

4.4 Optimization with Backtracking Based on Equality Saturation
4.4.1 E-graph Structure. E-graph structure is de�ned as triple of (set of enode, set of eclass, set

of edge). Each enode contains a boolean operator (^, �) or boolean value (0, 1, boolean variable).
Eclass is a set of enodes. Edge connects an enode to an eclass.
The meaning of E-graph is as follows. Each enode represents a set of all boolean expressions

(i.e. boolean circuits) that can be generated by following manner. If an enode contains a boolean
value, it represents the node value itself. If an enode contains a boolean operator, we generate
child boolean expressions by following manner. we choose an enode from each child eclass, and
choose one of the boolean expressions represented by each chosen enode. All boolean expressions
generated by enodes in the same eclass must be semantically equivalent.

Note that E-graph also can be interpreted as a program grammar. Each of eclasses corresponds
to nonterminal symbol and each of enodes in that eclass corresponds to a production rule for the
nonterminal symbol. Every E-graph corresponds to a particular context free grammar.
In this context, equality saturation is a process of constructing a program grammar that can

generate all circuits equivalent to input circuit.

4.4.2 Equality Saturation Process. Equality saturation consists of two processes: saturation
process and extraction process. First, in the saturation process, we continually expand E-graph
by �nding all circuits which is semantically equivalent to an initial circuit. We call the E-graph
saturated if we can not �nd any other equivalent circuits. In the extraction process, we extract a
circuit that has the lowest multiplicative depth from a saturated E-graph.

Figure 3 and Figure 4 illustrates the saturation process. We start with a term graph of the input
boolean circuit ((x1 ^ x2) ^ (x2 � x3)) ^ x3 and following rewrite rules.

rule (1) : ((�1 ^�2) ^�3) ^�4 ! ((�1 ^�2) ^�4) ^ ((�2 � �4) � �3)
rule (2) : ((�1 ^�2) ^�3) ^�4 ! (�1 ^�2) ^ (�3 ^�4)
rule (3) : (�1 � �1) ! 0
rule (4) : (�1 ^ 0) ! 0

Then we explore optimized circuits that can be generated based on the rewrite rules by an iteration
of three steps: ematch, add, and merge. Figure 3 illustrates the �rst iteration. In the ematch step, we
�nd all enodes which can be rewritten by a certain rule. An enode is said rewritable by a certain
rule if it can generate a circuit which can be rewritten by the rule. As the root enode can generate
circuit ((x1 ^x2)^ (x2 � x3))^x3 that can be rewritten by rule (1) and rule (2), we get two rewritten
circuits as a result of ematch step for the root enode (Figure 3.(a)). In the add step, we add all
rewritten circuits to the E-graph in a recursive manner from bottom to top (Figure 3.(b)). Newly
added enodes are colored gray in Figure 3 and Figure 4. Note that each added rewritten circuit
corresponds to an enode. In the merge step, for each pair of rewritable enode and rewritten circuit,
we merge the rewritable enode and newly added enode (that corresponds to the rewritten circuit)
as the same eclass (Figure 3.(c)). In the second and third iteration, we expand E-graph by applying
rewrite rule (3) and rule (4) respectively (Figure 4.(c), Figure 4.(d)).3 As the root enode is merged
3More enodes are rewritable by rule (2), but we ruled out them in Figure 4 for clarity.
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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• 규칙적용이 더 이상 E-graph 변화 못시킴 => 끝!
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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• 가장 곱셈깊이가 작은 회로 선택: 0
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Fig. 4. Change of E-graph during iterations. Do�ed box means eclass. (a) initial E-graph. (b) a�er 1 iteration.
(c) a�er 2 iteration. (d) saturated E-graph.

In a saturation-based rewriting system, the possibility of �nding the globally optimal circuit is
enlarged. As we e�ciently compress all possible result circuits as a form of program grammar, we
can explore an expansive space within a practical time budget.

Although equality saturation is a time-consuming method in general, we can successfully intro-
duce it for our term rewriting system since most of the homomorphic evaluation circuits have a
relatively small scale.

5 EVALUATION
We implemented our method as a tool named L������4. This section evaluates our L������ system
to answer the following questions:
Q1: How e�ective is L������ for optimizing FHE applications from various domains?
Q2: How does L������ compare with existing general-purpose FHE optimization techniques?
Q3: What is the bene�t of reusing pre-learned rewrite rules?
Q4: What is the bene�t of using equality saturation technique?
Q5: What is the bene�t of the rule normalization and equational matching?
Q6: How long does L������ take to obtain optimized circuits?
Q7: How sensitive is L������ to changes in the training set for learning rewrite rules?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

5.1 Experimental Setup
Implementation
L������ comprises three pieces: (i) an o�ine rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. L������ is written in OCaml and RUST, and consists of about 3K
lines of code.
4Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
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기존 연구결과(PLDI’20) 대비 개선효과

• 합성기를 EUSolver에서 더 나은 Duet 으로 교체

• 학습한 최적화 규칙 186개 → 502개 

• 동일식 모두 모으기

• 최적화 효과: 총 25개 프로그램 중 19개 최적화 성공 

(76%) → 22개 성공 (88%) 

• 결론: 합성으로 최적화 규칙을 찾고 동일식 모두 모으기로 

완전탐색시 최적화효과 극대화!



Contents

• 프로그램 합성 소개

• 진행중인 합성 및 분석 연구들 소개

• 합성기반 동형암호 프로그램 최적화

•안드로이드 인스턴트 앱 자동생성 

• 재귀호출 프로그램 합성

• 동형암호 기반 개인정보 유출없는 정적 분석



동기: 점점 증가하는 앱 크기

Android

2012년에서 2017년의 5년 간
App 크기 5배 증가

iOS

2016년에서 2021년의 5년 간
App 크기 4배 증가

출처 : Google IO18, SensorTower Inc.



대응책: 설치가 필요 없는 저용량 데모용 앱

용량 제한 10MB용량 제한 15MB
기존 App에 적용하기 위해서는
용량 제한에 맞춰서 기능을 줄이고
코드와 자원의 제거를 
개발자가 수동으로 해 주어야 함

➡ 고비용 작업 (안쓴다)



우리의 제안: 자동 데모 앱 생성기

• 입력: 
• 데모 App에 포함될 기능을 명세 — 사용 시나리오 (이벤트 시퀀스)
• 제한 용량 (예: 15 MB)

• 출력: 성공시 데모 App
• 용량 제한 이하
• 사용 시나리오를 재현 가능
• 시나리오에 없는 이벤트에도 가능한 안죽고 잘 버팀
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동기: 어려운 함수형 언어

• 한양대학교 ERICA 학부 프로그래밍언어론 수업

• 프로그래밍 언어의 다양한 원리들 학습. 함수형 언어 OCaml 로 진행

• 수강 후기



OCaml 합성기

• 목표: 입출력 예제로부터 OCaml 프로그램 합성하도록. 

• 다양한 예제에 대해 합성된 코드로부터 OCaml 이해 

• OCaml 자체에 매몰되지 않고 핵심 콘텐츠에 집중

• 도전과제: 함수형 언어에서 흔한 재귀호출 — 합성하려는 함
수가 합성하려는 함수 그 자체를 사용



합성에 사용하는 OCaml Subset
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A Bidirectional Approach to Recursive Program Synthesis
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1 SETTING
1.1 Language
Syntax

P ::= rec f (x : �1) : �2 = e

e ::= x

| e1 e2
| ·
| �(e1, · · · , ea(�))
| ��i (e)
| match e with �i _ ! ei

k

� ::= T | �1 ! �2

P ::= rec f (x : �1) : �2 = e

e ::= x

| App(e1, e2)
| ·
| Ctor(�, e1, · · · , ea(�))
| Unctor(�, i, e)
| Match(e, e1, · · · , ek )

� ::= T | �1 ! �2

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
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© 2021 Copyright held by the owner/author(s).
XXXX-XXXX/2021/1-ART
https://doi.org/10.1145/3434335
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데모

type nat = 

  | O 

  | S of nat 

type list = 

  | Nil 

  | Cons of nat * list 

synth list -> nat satisfying 

[Nil] -> 0, 

[Cons(0,Nil)] -> 1, 

[Cons(0,Cons(0,Nil))] -> 2, 

let rec (f : (list -> nat)) =  

  fun (x:list) ->  

    match x with 

    Nil(_) ->  

      O(Un_Nil(x)) 

    Cons(_) ->  

      S((f (Un_Cons(x)).1)) 



향후 계획

• 양방향 탐색 알고리즘 기반 프로그램 합성 기법을 재귀함수 

합성에 적용

• Woosuk Lee, Combining the Top-Down Propagation and Bottom-
Up Enumeration for Inductive Program Synthesis, POPL 2021.
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정적 분석 서비스 (Static analysis-as-a-service)



문제: 소스코드 지적재산권 보안

• 장점: 클라우드의 연산능력 사용, pay-per-line 등 유연하고 저
렴하게 분석기 사용가능

• 단점: 분석 의뢰하는 대상코드는 서비스 제공자에 노출됨

• 그게 싫으면, 분석기 구매 후 사용 (On-premise)

• 문제: 비쌈! (예: Coverity 10명 미만 1년 사용권 3360만원)

• 왜 비싼가? ⇒ 분석기에 대한 지적재산권



가능한 대안: 동형암호 사용

• 문제: 동형암호 연산 비용이 매우 비쌈 (300줄 분석에 이틀)

AnalyserUser

Program

Analysis Result

Encrypted Program



우리의 대안: 동형암호 + 다자간 계산 
(Secure Multi-Party Computation)

Client Server

Program 
information

Obfuscation

f

Deobfuscation

Analysis 
Result

Analysis 
in Secrecy

Encrypted
Analysis 
Result

Encryption

Decryption

• 동형암호 연산 중 서버에게 어려운 부분 클라이언트에 역으로 외주주기

• 그러나 클라이언트에겐 매우 쉬운 문제 (역행렬 계산, 영행렬 체크)

• 상호작용 중 대상 프로그램 및 분석기에 대한 정보 노출 X

• Datalog 로 쓰인 정적 분석 대상



실험결과

• 소형 C 벤치마크 프로그램 대상 포인터 분석

• 동형암호에만 의존하던 예전 연구보다 월등한 성능



그 외 진행 중 연구들

• 요약해석 기반 프로그램 합성 가속화 (with 서울대)

• 프로그램 합성 기반 자동 프로그램 오류 수정


$<��!


